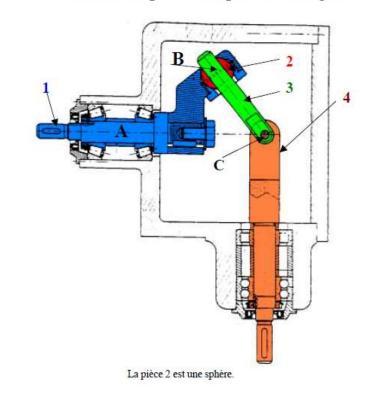

| MP  | Sciences Industrielles de l'Ingénieur | Date : 16/11/2020 |
|-----|---------------------------------------|-------------------|
| TD2 | CINICNAATIOLIC                        |                   |
|     | CINEMATIQUE                           |                   |


### **MELANGEUR**

# 1. Description

Le mécanisme dont le schéma cinématique est donné ci-dessous représente un mélangeur. Un moto-réducteur non représenté entraîne en rotation uniforme autour de l'axe  $(A, \vec{y}_0)$  l'arbre d'entrée  $\underline{\mathbf{1}}$ . Le déplacement de l'axe de transmission  $\underline{\mathbf{3}}$ , ainsi produit, permet la rotation alternative de l'arbre récepteur  $\underline{\mathbf{4}}$  autour de l'axe  $(C, \vec{z}_0)$ .



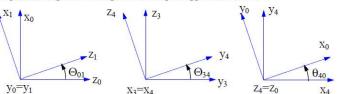
## 2. Dessin technique en coupe du mélangeur



#### 3. Repères associés aux solides

 $B_0 = R_0 = (A; \vec{x}_0; \vec{y}_0; \vec{z}_0)$  lié au bâti <u>0</u>

 $B_1 = R_1 = (A; \vec{x}_1; \vec{y}_1; \vec{z}_1)$  lié à l'arbre d'entrée <u>1</u>


 $B_2 = R_2 = (B; \vec{x}_2; \vec{y}_2; \vec{z}_2)$  lié à l'axe de transmission 3

 $B_3 = R_3 = (B; \vec{x}_3; \vec{y}_3; \vec{z}_3)$  lié à la sphère **2** 

 $B_4 = R_4 = (C; \vec{x}_4; \vec{y}_4; \vec{z}_4)$  lié à l'arbre de sortie  $\underline{4}$ 

#### 4. Paramétrage

La géométrie :  $\overrightarrow{AB}=|\vec{z_1}$   $\overrightarrow{CB}=\lambda\vec{z_3}$   $\overrightarrow{AC}=h\vec{y_0}$ La position angulaire des repères les uns par rapport aux autres.



# 5. Torseurs cinématiques associés aux liaisons Li/i

INP HB CPGE

## 6. TRAVAIL DEMANDE

- Question 1 : Tracer le graphe du mécanisme en indiquant les liaisons
- Question 2 : Tracer le schéma cinématique du mélangeur en perspective isométrique et placer sur ce schéma les différents repères R0, R1,R2, R3 et R4.
- Question 3: Déterminer le torseur équivalent à l'association des liaisons  $L_{12}$  et  $L_{23}$ , et tracer en perspective isométrique le schéma cinématique minimal.
- Question 4: Ecrire la fermeture géométrique du mécanisme. Quel est le paramètre d'entrée et quels sont les paramètres de sortie ?
- Question 5: Calculer  $\tan\theta_{40}$ ,  $\lambda$  et  $\cos\theta_{34}$  en fonction de tous les paramètres utiles et notamment l,h et  $\theta_{01}$ .
- Question 6: Ecrire la fermeture cinématique du mécanisme au point C dans la base  $B_0 = (\vec{x}_0; \vec{y}_0; \vec{z}_0)$ .
- Question 7: Quelle est la mobilité du mécanisme ?
- Question 8: Déterminer la relation entrée-sortie soit  $r_{40}$  en fonction de  $q_{10}$  et de tous les paramètres utiles.

INP HB CPGE